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ABSTRACT

Reasoning visualization is a useful tool that can help users better
understand the inherently non-sequential logic of an expert system. While
this is desirable in most all expert system applications, it is especially so for
such critical systems as those destined for space-based operations. A
hierarchical view of the expert system reasoning process and some charac-
teristics of these various levels is presented. Also presented are Abstract
Time Slice displays, a tool to visualize the plethora of interrelated informa-
tion available at the host inferencing language level of reasoning. The use-
fulness of this tool is illustrated with some examples from a prototype pot-
able water expert system for possible use aboard Space Station Freedom.

Introduction

We interact with expert systems for a variety of reasons: to develop/debug them; to
analyze them; to use them to obtain answers in their programmed area of expertise; to
learn a tutored subject from them; or just to understand the underlying inferencing process.
During all these uses, one can benefit from an understanding of the reasoning process of
the expert system. While it can be argued, that this understanding is useful for all expert
system applications, it becomes increasingly important for systems in critical application
environments, such as space-based systems.

There are two major impediments to obtaining this understanding. First, humans have
a basic limitation on the number of concepts that can be maintained in immediate attention,
the combination of short term memory and the processing done therein. This limit is the
oft cited seven + two "chunks", where a chunk is some unit concept. Second, the informa-

tion germane to acquiring this understanding is usually presented at too low a conceptual
level. There is so much detail presented that one expends significant mental effort trying to
combine the detailed information into a coherent "picture", a higher level conceptualization

(7). The first limitation is innate. The second limitation arises because current information

presentation methods present too much information at too detailed a level. If the informa-
tion were to be presented at an appropriately higher conceptual level, the basic human cog-
nitive limitation could be at least partially circumvented.
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As anexample,considera setof real numbersrelatedby theequation,
y=cos(10*PI*x/100)exp(-x/20),x=0,99,anexponentiallydecayingsinusoid.If this setof
numbersis conveyedasthe list in Figure 1,

O0 1.00000 0.904673 0.732029 0.505911 0.253002

05 -3.40425e-08 -0.228926 -0.414205 -0.542300 -0.606420

10 -0.606531 -0.548712 -0.443998 -0.306851 -0.153453

15 5.63291e-09 0.138850 0.251228 0.328922 0.367813

20 0.367879 0.332811 0.269298 0.186114 0.0930738

25 -9.67717e-08 -0.0842171 -0.152378 -0.199501 -0.223090

30 -0.223130 -0.201860 -0.163338 -0.112884 -0.0564522

35 1.15318Q-07 0.0510803 0.0924217 0.121004 0.135311

40 0.135335 0.122434 0.0990693 0.0684676 0.0342401

45 -1.04287e-07 -0.0309818 -0.0560566 -0.0733924 -0.0820701

50 -0.0820850 -0.0742601 -0.0600886 -0.0415277 -0.0207676

55 -3.78490e-08 0.0187914 0.0340001 0.0445147 0.0487780

60 0.0497871 0.0450410 0.0364456 0.0251878 0.0125962

65 -2.66556e-08 -0.0113976 -0.0206221 -0.0269996 -0.0301919

70 -0.0301974 -0.0273188 -0.0221053 -0.0152772 -0.00763999

75 1.40223e-09 0.00691299 0.0125079 0.0163761 0.0183123

80 0.0183156 0.0165697 0.0134075 0.00926608 0.00463387

85 8.10506e-09 -0.00419293 -0.00758645 -0.00993257 -0.0111070

90 -0.0111090 -0.0100500 -0.00813209 -0.00562015 -0.00281059

95 6.15401e-09 0.00254315 0.00460141 0.00602442 0.00673673

Figure 1

roughly equivalent to the textual traces available from most current expert system shells,
one would be hard put to mentally determine the interrelationships of those numbers. If
instead this data is presented in a graphical form as in Figure 2,
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Figure 2

the interrelationships of the data values are immediately obvious. The detail of the exact
individual values has been lost, but information on a higher conceptual level has been
obtained, and with much less work on the part of the observer.

This is exactly the problem facing the individual trying to understand the reasoning
processes of an expert system. Current environments present too much data at too low a
level of detail for easy understanding of the processes involved. This problem in another
form is the basis for the explanation systems/language generation systems field (4, 6). For

similar reasons, in the realm of procedural programming, algorithm animation research is
flourishing in order to illustrate the underlying processes of various sequential algorithms
(3,5,II).
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This paper focuseson thereasoningprocessesof expert systemsanda tool for visual-
izing a subsetof thoseprocesses.While therearevariousparadigmsfor expert systemrea-
soning (1, 12), it wasdecidedto initially focus this researcheffort on theforward-chaining
rule-basedparadigm.Per this focus,CLIPS, a readilyavailableexpertsystemshell,was
chosenasthe researchvehicle.

Levels Of Reasoning

The reasoning of an expert system may be viewed on a continuum from that of the
microcode of the hardware up through the programming language in which the host
inferencing language is implemented on up to a "black-box" view of the application in
which one sees only inputs and outputs. Pragmatically, the lowest level view which is of
interest is that of the host inferencing language in which the expert system is implemented

since this is the most primitive level at which the reasoning of the application may be

specified.

Given an existing (or planned) expert system application, it can be viewed as having
two distinct reasoning components. One is that of the application itself and is represented
by the most abstract processes that define the reasoning of the expert system application.
The result of the reasoning of this component consists of the inputs and outputs of the

application, some subset of which are provided by and/or to the user. These inputs and out-
puts comprise the black-box view of the application. The other component is that of the
inferencing language in which the application is (or will be) actually implemented. This is

the part seen more by the expert system developer.

At the reasoning level of the host inferencing language, the reasoning is in terms of

the primitives of that language. In most rule-based expert systems, these primitives are the
facts and rules. The operations on these primitives are the assertion and retraction of facts,
an initialization operation which asserts a set of predefined facts, the input and output of
information, and the activation, deactivation and firing of rules to/from the agenda. While

some rule-based expert system development languages (e.g. ART) also include the opera-
tion of existing rules defining new rules, for this research effort that operation is not con-
sidered.

The specifics of the application do not affect the actual reasoning primitives or the

operations upon them, just the sequence order of their occurrence. Thus, at this reasoning
level one can provide an ad hoc reasoning visualization. Users of this level would be sys-
tem implementors desiring a gestalt of the low level reasoning in order to detect anomalous
behavior and indications of application (in)efficiency.

At the highest level, that of the abstract reasoning process, the application reasoning is
viewed in its most abstract form. This typically corresponds to metarules in more complex

applications. At this level one is considering the application as conceived by the designer,
not as it will be implemented.

Between these two endt2oint levels are various mixtures of the two which are concep-

tually grouped into a realized application level. At this level the reasoning primitives are
application oriented, even if they are associated with host inferencing primitive operations.
One is interested in the concepts which rule firings represent, not merely that rules have
fired. However, the visualization of the reasoning processes involved is in a form that is

related to the inferencing language implementation of the application as opposed to the
abstract reasoning processes, devoid of implementation considerations. This distinction
between the abstract and realized application levels is similar to the conceptual versus

implementation distinction made by Buchanan and Smith(2). For visualization of these
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applicationbasedreasoninglevelsan adhocmethodis not possible.Instead,onemust pro-
vide flexible facilities to allow usersto constructtheir own customvisualizations(9).

The abovediscussionleadsto the proposalof a hierarchy of reasoning levels. Con-
ceptually, one can identify a continuous hierarchy of the reasoning process, based on a
decreasing amount of detail, grouped into three ranges as shown in Figure 3. This hierar-
chy is viewed as a continuum since the abstract application level covers a range of detail
as does the realized application level. One may also consider a range of detail at the host
inferencing language level (e.g. all rules, some rules only, rule groupings). Note that this
is but a more abstract view of our previous work on this subject(10).
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Figure 3

In focusing on the lower level primitive reasoning of an expert system, such as would
be of interest during development/debugging and efficiency analysis, one is interested in
the reasoning at the host inferencing language level. A model of a rule-based host
inferencing language may be represented as the 4-tuple

Mhi 1 = IF, R, A, O]

where

F = the set of facts, initially empty

R = the set of rules with antecedent patterns to be matched by facts _ F

A = the agenda; an ordered set of instantiations of rules _ R matched by facts
F; initially empty

O = the set of operations that modify F or A, or perform I/O

The operation set, O, consists of fact assertion, fact retraction, rule activation, rule
deactivation, rule firing, input, output, and an initialization operation which causes
predefined facts to be asserted.

Fact assertion and retra&ion are associated with the execution of the consequents of a
rule instantiation that has been removed from the agenda for "firing". The initialization

operation may be considered a pseudo rule firing in this respect since it also asserts facts.
I/O is associated only with a rule firing.

Rule activation and deactivation are associated with changes to the set F. If a fact is
added to F such that some rules _ R are completely matched resulting in new instantia-
tions of those rules, these instantiations are added to the set A. That is rule activation. If a
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fact _ F is retractedandthepreviousassertionof that fact hadresultedin theaddition of
instantiationsof somerules beingaddedto theagenda,thenanyof thoseinstantiations
remainingon the agendaare removed.That is rule deactivation.

Of particular interestat thisreasoninglevel is the traffic over time on both the fact
list and the agenda, and the cause/effect interrelationships of that traffic. One would like to
see a gestalt of the overall flow of the host inferencing language reasoning process and
thus identify various aspects of operation, both normal and abnormal. One would like to be
able to see sequences of rule group firings indicating phased rule operations along with the
phasing control. Errant rule firing from inappropriate rule groups is also of interest. Also
desirable would be the ability to identify excess activations and deactivations which may
be caused by inefficient consequent sequencing. Fact and rule effectivity and agenda
traffic density should also be easily observable. The information of interest at this reason-

ing level is similar to the information of interest to a person monitoring a wide area net-
work system. The content of the actual data moving about the network does not matter.
What is of concern is being able to tell that it is moving correctly and efficiently and that
current and hopefully even potential problems can be identified easily.

Abstract Time Slice Displays

Abstract time slice (ATS) displays provide solution to the problem of the visualization
of the host inferencing language reasoning level of a forward-chaining rule-based expert
system. In providing a visualization of the above described reasoning there are two key
issues, presentation at the appropriate level of detail and prevention of information over-
load even at that appropriate level. The appropriate level of detail is defined as that level at
which the user immediately grasps the concept being presented. There should be little or
no mental processing involved in assimilating the symbols. For presentation at the

appropriate level of detail, ATS displays use unique symbols to represent the individual
primitives and operations of the host inferencing language reasoning model. This obviates
the need for the user to perform text to concept transformation. Instead the information is

presented graphically. To prevent overload, ATS displays are static, thus providing support
to the user's limited short term memory. They depict rules being activated and deactivated
as the result of facts being either retracted or asserted (not respectively) as a result of other
rule firings. They also show I/O as a result of rule firings. All of this information is
displayed in an interrelated manner over time.

The program that generates ATS displays presently runs as a separate program taking
as input two files, a segmented list of the rule names in the application and a file contain-
ing the full trace output from a run of the application. ATS outputs five files, the main
display file and four adjunct files. The main display file is an ASCII file of PostScript code
that creates the ATS displays on a laser printer. The adjunct files contain the details of the
facts and I/O on both a time-slice and a sequential time-compressed basis. Since this capa-
bility is ad hoc and at the host inferencing language level, it could be integrated into
CLIPS itself providing file output and/or direct graphical display. To understand the ATS
displays, a few symbols must be defined. These are displayed and notated in Figure 4
while Figure 5 depicts various other information in the displays.

The causative symbol at a particular time slice indicates that some fact operation has
caused either a rule activation or deactivation to happen (at some later time slice). A solid

line connects the causative symbol to the effect caused.

The causing symbol indicates that some fact or I/O operation has been caused as a
direct action of a fired rule's consequent. A solid line connects all of the actions caused by

a particular rule firing, thus giving some indication of the scope and activity of a fired rule.
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The causing symbol is also used to indicate a rule activation/deactivation associated with a
fact operation.

The symbols for a rule activation, deactivation and firing are shown. A dotted line
after a rule activation symbol is used to indicate a rule pending on the agenda. Since it is

p.ossible that more than one instance of a rule may be pending on the agenda at a given
time, this is indicated by a widening of the dotted line. This indication is meant to be qual-
itative, not quantitative.

At the left of the rule portion of the display are symbols indicating agenda traffic. A
hollow right arrow indicates a rule activation, while a hollow left arrow indicates a rule

deactivation. A solid left arrow indicates a rule firing. Thus, the information inherent in the
rule symbols elsewhere has been collapsed on the left side of the rule display. Note the
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consistency between the hollow and solid symbols for both indications of rule activity.
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The rule names are listed across the top of the display while the leftmost columns
indicate time, I/O, and fact information respectively. The time column is straightforward. A
time slice is defined to be one trace output line. The I/O column contains both CLIPS
directives, such as '(reset)' and '(run)', and actual application I/O. The CLIPS directives
are indicated by a leading left parenthesis. Actual I/O is indicated by an imposed leading
'>'. In the fact column is the information of the fact number and the first few characters of
the fact itself. For the full details of the fact (or the I/O) one can refer to one of the

adjunct files. Additionally, if the fact has been retracted, there will be an asterisk after the
fact number and the retraction time in brackets after the initial fact characters. There will

also be, at the retraction time, an indication of that fact number being retracted.

To aid in visual grouping of the abstract symbols, the user may specify in the seg-
mented rule list the order of the rules defined and a spacing between their display. Thus,
one could tell when rules of different types are active and, based on one's knowledge of
the intended reasoning, be able to identify rules firing out of place.
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Examples

In Figure 6 one can see several instances of rules activating due to some fact opera-
tion and then deactivating due to another fact operation within the consequent range of the
same rule. Investigation showed that this was caused by inefficient consequent sequencing
in the rules involved. Rearrangement of the consequents of the affected rules resulted in
the disappearance of the excess agenda traffic.
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In Figure 7 the rules in the far right group are phase and sequencing control rules.
The sequencing control rules axe those that are cycling on a short time frame. The phase
control rules are those that go on the agenda and then sit for a long time before firing. It
can also be seen that after this transition the grouping of the remaining rule firings has
changed.

In Figure 8 a rule is firing without any effects from its consequents, neither I/O or
fact operations. While this appears to be an error, analysis showed that this rule was assert-

ing a fact already in the fact list. Thus, CLIPS did not show that fact as being reasserted.
In general, fact reassertion is inefficient and indicates a possible need for rule logic
modification.

ATS displays were used during the development of a demonstrational prototype of an
expert system application for controlling the potable water subsystem of the Environmental
Control and Life Support System (ECLSS) aboard Space Station Freedom(8). There were

two main contributions of ATS displays to that effort. First was the identification of inap-
propriate fact list changes causing rules to deactivate immediately after being activated.
Second, the displays provided a picture of the overall patterns of rule activations giving a
quick "state of health" view during subsequent knowledge base enhancements.

Conclusions

ATS displays have shown themselves to be useful for reasoning visualization at the

host inferencing language level of a forward-chaining rule-based expert system by provid-
ing a global interrelated view of the large amount of available information. This
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Figure 7
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visualization is particularly useful during the development/debug and analysis phases of the
expert system application building process. This provision of a gestalt not previously avail-
able allows the user to more easily identify and isolate problem areas then would be possi-

ble using detailed traces alone.
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